Large eddy simulation of compressible turbulent pipe flow with heat transfer

نویسندگان

  • Xiaofeng Xu
  • Francine Battaglia
  • Soma Chaudhuri
  • Gerald M. Colver
  • Ganesh R. Rajagopalan
  • John C. Tannehill
چکیده

A compressible finite volume formulation for large eddy simulation (LES) of turbulent channel flows was extended to solve the turbulent flows in pipes and annular passages. A general finite volume scheme was developed based on conservation equations in Cartesian coordinates with non-Cartesian control volumes. A dual-time stepping approach with time derivative preconditioning was employed and time marching was done with an implicit lowerupper-symmetric-Gauss-Seidel (LU-SGS) scheme. The small scale motions were modeled by a dynamic subgrid-scale (SGS) model. The code was developed in a multiblock framework and parallelized using the message passing interface (MPI). The finite volume LES formulation was validated by simulating the isothermal fully devel­ oped turbulent pipe and annular flows. The results were compared to experimental data and direct numerical simulation (DNS) results. The LES formulation was further validated by the simulation of turbulent pipe flows with low heat transfer and comparisons with passive scalar DNS results. Finally, buoyancy forces were added into the LES formulation to simulate mixed convection in a vertical pipe with constant high wall heat fluxes leading to significant property variations. Step-periodic boundary conditions were studied and implemented. The results were validated by comparing with experimental results. Heating effects and flow laminarization were studied. Excellent agreement with DNS and experimental results were obtained for isothermal tur­ bulent pipe and annular flows. The mean temperature profile for the turbulent pipe flow with low heat transfer matched very well with the DNS passive scalar results. Good matches to constant property correlations were also achieved for friction coefficients and Nusselt numbers. For the mixed convection in a vertical pipe, good agreement with the experimental mean

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Model for Prediction of Heat Eddy Diffusivity in Pipe Expansion Turbulent Flows

A new model to calculate heat eddy diffusivity in separating and reattaching flows based on modification of constant Prt is proposed. This modification is made using an empirical correlation between maximum Nusselt number and entrance Reynolds number. The model includes both the simplicity of Prt=0.9 assumption and the accuracy of two-equation heat-transfer models. Furthermore, an appropriate l...

متن کامل

The Experimental Study of Nanoparticles Effect on Thermal Efficiency of Double Pipe Heat Exchangers in Turbulent Flow

In this work, the characteristics of flow and heat transfer of a fluid containing nano particles of aluminum oxide with the water volume fraction (0.1-0.2-0.3)(V/V) percent of the reports. The overall heat transfer coefficient, heat transfer and the average heat transfer fluid containing nano water - aluminum oxide in a horizontal double pipe counter flow heat exchanger under turbulent flow con...

متن کامل

Numerical Simulation of Turbulent Subsonic Compressible Flow through Rectangular Microchannel

In this study, turbulent compressible gas flow in a rectangular micro-channel is numerically investigated. The gas flow assumed to be in the subsonic regime up to Mach number about 0.7. Five low and high Reynolds number RANS turbulence models are used for modeling the turbulent flow. Two types of mesh are generated depending on the employed turbulence model. The computations are performed for R...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015